
[Vyas, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [575]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A SURVEY ON THE CONCEPT OF OBJECT ORIENTED TECHNOLOGY
 Aishwarya Vyas*, Bandana Mahapatra, Anshul chhabra, Astha Paliwal, Aarti Suryavanshi

ABSTRACT
Classes are a boon to computer programming. When classes were not there the code was not secure since all the

functions can access all the information. The debugging of code was difficult as the program followed top-down

approach and the program was not divided into modules. So, error detection was a difficult task. Another drawback

without classes was lack of reusability of code. If we had to use a code more than once, then we had to rewrite the

whole code. This was a monotonous task. With the introduction of classes, data hiding was improved by using access

specifiers, data reusability was introduced by using the concept of inheritance and debugging was easy as the program

was divided into modules and followed a bottom-up approach.

KEYWORDS: Boject Oriented Technology.

 INTRODUCTION
Relationships:-

Relationships represent logical links between two or

more entities. For example: Residence is a relationship

that can exist between the entities city and employee.

Instance of a relationship:-

It is an n-tuple made up of instances of entities, one for

each of the entities involved. The pair of objects made

up of the employee named John and The city London,

or the pair of objects made from the employee Peter

and the city New York, are examples of instances in

the relationship Residence.

Types of relationships:-

Relationships can be classified as under:

1. Association

Association represents a relationship between

two objects that is; association defines the

multiplicity between objects. You may be

aware of the terms one-to-one, one-to-many,

many-to-one, many-to-many. All these words

define an association between objects.

2. Aggregation

Aggregation is a special type of association. It

is a directional association between objects.

When an object ‘has-a’ another object, then you

have got a case of aggregation between them.

The direction between them specifies which

object contains the other object. Aggregation is

also called a “Has-a” relationship.

3. Composition

Composition is a special type of aggregation.

More specifically, a restricted aggregation is

called composition. When an object contains

the other object, if the contained object cannot

exist without the existence of container object,

then it is known as composition.

4. Dependency

If the change in structure or behavior of a class

affects the other related class, then there exists

a dependency between those two classes. It

need not be true for vice-versa. When one class

contains the other class in it then this happens.

5. Generalization

Generalization works on a “is-a” relationship

from a specialization to the generalization class.

Common structure and behavior are used from

the specialized to the generalized class. In a

broader sense you can understand this as

inheritance. Generalization is also known as

“Is-a” relationship.

6. Realization

It is a relationship between the blueprint class

and the object containing its respective

implementation details. The object is said to

realize the blueprint class. In a broader sense,

you can understand this as the relationship

between the interface and the implementing

class. The above are the non-functional

parameters over which different types of

relationships are compared with one another.

These parameters help us in choosing the best

suited relationship for Finding out the solution

to a given problem.

http://www.ijesrt.com/

[Vyas, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [576]

Reusability:

Reusability means being able to create a new class that

uses the features of an existing class without recoding

those features. Inheritance means reusing code in a

hierarchical structure. For instance, a Basic

Programmer is a Programmer is a Worker is a Person

is an Animal. All Animals have heads, and therefore

the Head property of a Basic Programmer should

inherit all the general features of Animal heads plus all

the features of Person heads plus all the features of

Worker heads plus all the features of Programmer

heads. When creating a Head property for a Basic

Programmer object, you should need to write only the

head code unique to Basic Programmers.

Complexity:

By complexity we mean the time and space required

for solving a computational problem.

The time the computer requires for solving a given

problem and the space required for the same.

Efficiency:

Code efficiency is a broad term used to depict the

reliability, speed and programming methodology used

in developing codes for an application. Code

efficiency is linked with algorithmic efficiency and the

speed of runtime execution for software. It is the key

element in ensuring high performance. The objective

of code efficiency is to reduce resource consumption

and completion time as much as possible with

minimum risk to the business or operating

environment. The software product quality can be

accessed and evaluated with the help of the efficiency

of the code used.

Maintainability:

To a developer, maintainable code simply means

“code that is easy to modify or extend”. At the heart of

maintainability is carefully constructed code that is

easy to read; code that is easy to dissect in order to

locate the particular component relating to a given

change request; code that is then easy to modify

without the risk of starting a chain reaction of

breakages in dependent modules.

Understandability:

A code that is a robust, quick and optimized code

while it is structured enough to be readable by you and

others later now understanding the relationships in

brief:

UML VIEW
ASSOCIATION:

For example, a Customer class has a single association

(1) to an Account class, indicating that each Account

instance is owned by one Customer instance. If you

have an account, you can locate the owning customer

of that account, and for a given customer, you can find

the account of that customer. The association between

the Customer class and the Account class is important

because it shows the structure between the two

classifiers.

Multiplicity information can be linked to an

association to show how many instances of class are

linked with instances of class B. Multiplicity

information can be linked to both ends of association

relationships. In class diagrams, association

relationships in a C/C++ application represent the

following things:

 A semantic relationship between two or more

classes that specifies connections among their

instances,

 A structural relationship that specifies that

objects of one class are connected to objects of

a second, possibly the same, class.

In visualization mapping, instance variables in a

C/C++ application become attributes in classifiers

in class diagrams. By default, all C/C++ fields are

shown as attributes.

An association relationship connector appears as

a solid line between two classifiers.

The following illustration displays a source code

example and a graphical representation of an

Association Relationship.

http://www.ijesrt.com/

[Vyas, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [577]

DEPENDENCY:

For example, a Cart class depends on a Product class

because the Product class is used as a parameter for an

add operation in the Cart class. In a class diagram, a

dependency relationship points from the Cart class to

the Product class. In other words, the Cart class is the

consumer element, and the Product class is the

supplier element. A change to the Product class may

cause a change to the Cart class.

In class diagrams, dependency relationships in a

C/C++ application connect two classes to indicate that

there is a connection between the two classes, and that

the connection is more temporary than an association

relationship. A dependency relationship indicates that

the consumer class does one of the following things:

 Temporarily uses a supplier class that has

global scope,

 Temporarily uses a supplier class as a

parameter for one of its operations,

 Temporarily uses a supplier class as a local

variable for one of its operations,

 Sends a message to a supplier class.

As the figures in the following table illustrate, a

dependency relationship connector appears as a

dashed line with an open arrow that points from the

consumer class to the supplier class. A dependency

relationship means an "import" statement.

http://www.ijesrt.com/

[Vyas, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [578]

GENERALISATION:

In C/C++ domain modeling class diagrams, a

generalization relationship, which is also called an

inheritance or "an A is a B" (a human is a mammal, a

mammal is an animal) relationship, implies that a

specialized, child class is based on a general, parent

class.

As the figure in the following table illustrates, a

generalization relationship connector appears as a

solid line with an unfilled arrowhead pointing from the

specialized, child C/C++ class to the general, parent

class. You can also visualize and design inheritance

relationships between C/C++ classes.

http://www.ijesrt.com/

[Vyas, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [579]

CONCLUSION
In this paper, we have seen the different view to

represent the relationship between the classes and their

UML view. This paper is giving a point through

which, we can come to know that how we build the

relationship between the classes. How the objects of

different classes will interact to one another. In the

review paper, we will show how these relationships

play an important role in the field of development.

REFERENCES
1. S. Barbey , M. Ammann, and A. Strohmeier.

Open issues in testing Object Oriented

software. In K. F . (Ed.), editor, ECSQ ’94

(Eur opean Conference on Software Quality),

pages 257–267, vdf Hochschulverlag AG an

der ETH Z ¨ urich, Basel, Switzerland,

October 1994. Also available as T echnical

Report (EPFLDI-LGL No 94/45).

2. G. Booch. Object Oriented Design.

Benjamin/Cummings Publ., USA, 1991.

3. G. Booch, I. Jacobson, and J. Rumbaugh.

Unified Modeling Language User Guide.

Addison-W esley , 1997.

4. T . J. Cheatham and L. Mellinger. T esting

Object-Oriented Software Systems. In

Proceedings of the Eighteenth Annual

Computer Science Conference, pages 161–

165. ACM, Feb. 1990.

5. P . Coad and E. Y ourdon. Object-Oriented

Analysis. Prentice Hall, London, 2 edition,

1991.

6. A. Coen-Prosini, L. Lavazza, and R. Zicari.

Assuring type safety of objectoriented

languages. Journal of Object-Oriented

Programming, 5(9):25–30, February 1994.

7. D. Coleman, F . Hyes, and S. Bear.

Introducing objectcharts or how to use

statecharts in object-oriented design. IEEE

Transactions on Software Engineering,

18(1):9–18, January 1992.

8. W . Cook. A proposal for making eiffel type-

safe. The Computer Journal, 32(4), 1989.

9. R. Doong and P . Frankl. The astoot approach

to testing object-oriented programs. ACM

Transactions on Software Engineering and

Methodology, 3(2):101–130, April 1994.

10. R.-K. Doong and P . G. Frankl. Case Studies

on T esting Object-Oriented Programs. In

Proceedings of the Symposium on T esting,

Analysis, and V erification (T A V4), pages

165–177, Victoria, CDN, Oct. 1991. ACM

SIGSOFT , acm press.

http://www.ijesrt.com/

